
Introduction to
Computer Programming

Chapter 01

Introduction

1

2

3

4

5

6

7

8

Common Factor?

9

10

Introduction

Most people don't actually know how a
computer works

They can interact with a computer

Impossible to know how everything works

Do you know internal working of car?

Does not mean we can't drive

11

Writing Software

As a programmer you will need to know a bit how a computer
works

Writing software =

describing processes and procedures

authoring of algorithms

developing lists of instructions

= source code

= instructions that manipulate different types of data

12

Some Definitions

proc-ess / Noun: A series of actions or steps taken to achieve an
end.

“

“

pro-ce-dure / Noun: A series of actions conducted in a certain
order.

“
“

al-go-rithm / Noun: An ordered set of steps to solve a problem.“ “

13

Clarity of Expression

Learning to programming is valuable

Even if you don't make a career out of it

Will help you to learn the importance of clarity of expression

Why ?

A computer is very dumb, but obedient

14

Teaching

It has often been said that a person
does not really understand something
until he teaches it to someone else.
Actually a person does not really
understand something until after
teaching it to a computer, i.e., express
it as an algorithm.

(Donald Knuth, in "American
Mathematical Monthly," 81)

“

“

15

Fun Fun Fun

But, most of all, it can be lots of
fun!

Computer = your own little entity
you get to boss around all day to do
all kinds of neat stuff for you.

16

An Application

A computer is a tool for solving problems

An application is a sequence of instructions that tell a computer
how to do a certain task.

When a computer follows the instructions in a program, it is said it
executes the program.

17

A Spoken Language

Before we start programming

Use a language such as the English language to describe how to do
something as a series of steps

Making a ham-and-cheese grilled sandwich

Washing a car

Doing laundry

...

18

A Spoken Language

Was that easy ?

Did you remember all the steps?

Useful exercise

Can become very complex

Computers are just not ready for it yet

Heck, most humans aren't even ready for it yet.

19

Don't Blame the Computer

Don't blame the Computer, blame the programmer

Instead ask yourself:

Did I tell the computer how to do the job correctly?

Did I forget something?

Did I misinterpret the problem

Do I have the solution wrong?

20

The Binary Language

Computer don't understand recipes
written on paper

Computers are machines

a collection of electronic
switches

1 represents "on" and 0
represents "off".

Everything that a computer does is
implemented in this most basic of
all numbering systems - binary.

21

Machine Code

Want to really tell a computer what
to do ?

You'd have to talk to it in binary,
giving it coded sequences of 1s and
0s

Tell it which instructions to
execute - machine code

In practice, we use a programming
language.

22

A Programming Language

A language developed to express programs

All computers have native programming language = machine code

Tell the processor what to do

Impractical for us humans

Unique to a particular computer architecture (x86, ARM,
PowerPC, ...)

Processor instruction set

23

Abstraction is Key

Abstraction is the process of hiding complex things behind a
simpler interface

Higher level programming languages do exactly this

BASIC

Java, C#, C++

...

Easier for us to understand

Less dependent on actual hardware

24

Abstraction is Key

25

Abstraction is Key

These higher-level languages are said to abstract away the
complexity of the underlying system.

Higher level programming languages still need to be translated
into machine code.

Compiled

Interpreted

(hybrid)

26

Compilation

Tool = compiler

Translation of higher language in architecture dependant machine
code

Input = full source code

Output = executable binary file that is permanently stored

27

Compilation

Analogy: book in different languages

Compiler

Transforms source code that was written in a specific
programming language into another

Not just machine code

28

Interpretation

Tool = interpreter

Translation of higher language in architecture dependant machine
code @ runtime

Input = partial source code

Output = machine code to be run at that moment

29

Interpretation

Analogy: human interpreter

Interpreter

At no point is a complete, discrete, machine code version of the
program produced

30

Compile or Interpret

Not always your choice

Depends on the programming language / tool you are using

Many are hybrid forms these days

General

Compiled programs are faster to run but slower to develop

Architecture dependency

31

Transpile

Transpiler = Translate compiler

Taking source code written in one language and transforming into
another language that has a similar level of abstraction.

Output still has to go through another compiler or interpreter to
be able to run on a machine.

Some examples of transpilers are:

tsc or TypeScript compiler, transpiles TypeScript into
JavaScript

babel , Transpiles ES6+ code to ES5 (ES6 and ES5 are different
versions or generations of the JavaScript language)

32

Let's See a Demo

Compiled: C++

Interpreted: JavaScript

Transpiled: TypeScript

33

What About C#

@Compile Time

Code is compiled to Common Intermediate Language (CIL)

Language specific C# compiler

Result is executable binary: .exe (or .dll in case of a library)

@Runtime

Binary can be run on system with .NET runtime installed

The Just-In-Time (JIT) compiler takes CIL code as input and
transforms it into the processor specific machine code

34

35

Levels of Programming Languages

Low level programming languages

Closer to machine code

High level programming languages

Closer to natural language

36

Assembly Language

Most basic level

Direct translation of the binary instructions

Each assembly language instruction directly relates to one
instruction in machine code

So each processor architecture has its own instruction set with
accompanying assembly language

37

An assembly example

LUI R1, #1

LUI R2, #2

DADD R3, R1, R2

Calculation 1 + 2 = 3

First two lines load the numbers "1" and "2" into the computer's
memory

Third instruction tells the computer to add the values together and
store the result

38

High Level Languages

Assembly language is quite dissimilar to natural languages

Ultimate flexibility and performance, at the expense of
complexity and development time.

Higher level languages get closer to natural languages

More efficient to express

Look more like natural language with mathematical operations
thrown in

int x = 1 + 2;

39

Graphical Programming Languages

More than 15 years ago, Scratch was invented

By Mitchel Resnick and friends at MIT

New approach to teaching computer programming

Graphical programming language

Programs are constructed by connecting blocks

Fun way to get started in programming

Not a way to create professional applications

40

41

Applications

Applications come in many different kinds and flavors.

service in the background: ex. webserver

in a terminal: ex. git

graphical application: ex. Visual Studio

inside a browser: ex. Scratch editor

42

Console Applications

Designed to be used via a text-only computer interface, such as

a text terminal, the command line interface of some operating
systems (Unix, DOS, etc.)

or the text-based interface included with most Graphical User
Interface (GUI) operating systems, such as the Win32 console in
Microsoft Windows, the Terminal in Mac OS X, and xterm in
Unix.

Interaction happens using keyboard

43

44

Console Applications

Use of console applications has greatly diminished, but not
disappeared

Some users simply prefer console based applications

Some organizations still rely on existing console applications to
handle key data processing tasks.

45

Console Applications

Another huge advantage of working with console applications
compared to a GUI application is the ability to automate certain
tasks.

Can be chained

Easily used in automation scripts

Still best te develop when learning to program

46

GUI Applications

GUI or Graphical User Interface applications

Require interaction with mouse and keyboard

Not so easy to automate

Not best choice to learn to program

47

48

How to Become a Programmer

Understand the problem

Define an appropriate solution

Express that solution in a computer programming language

Practice is essential

Don't be afraid to make mistakes

Learn to work in team

An expert is a man who has made all the mistakes which can be
made, in a narrow field. - Niels Bohr

“

“

49

